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Abstract— Productivity as a result of individual developers' con-

tributions is an important aspect for software companies to main-

tain their competitiveness in the market. However, there is no con-

sensus in the literature on how to measure productivity or devel-

oper contribution. While some repository mining-based metrics 

have been proposed, they lack validation in terms of their applica-

bility and usefulness from the individuals who will use them to as-

sess developer contribution: team and project leaders. In this pa-

per, we propose the design of a suite of metrics for the assessment 

of developer contribution, based on empirical evidence obtained 

from project and team leaders. In a preliminary evaluation with 

four software development teams, we found that code contribution 

and code complexity metrics received the most positive feedback, 

while participants pointed out several threats of using bug-related 

metrics for contribution assessment. None of the metrics can be 

used in isolation, and project leaders and developers need to be 

aware of the benefits, limitations, and threats of each one. These 

findings present a first step towards the design of a larger suite of 

metrics as well as an investigation into the impact of using metrics 

to assess contribution. 

 

Index Terms—Project management, software contribution 

metrics, mining software repositories. 

I. INTRODUCTION AND MOTIVATION 

Assessing the contribution of a developer in a software pro-

ject is a challenging task, yet project leaders and managers are 

constantly faced with having to make decisions based on the per-

formance of their developers. Many potential sources of devel-

oper contribution have to be considered, ranging from contribu-

tions in source code repositories and issue tracking systems to 

contributions to documentation and coordination. There is no 

consensus among researchers on how to assess developer contri-

bution, which is often conceptualized as productivity [1] [2]. 

While productivity is formally defined as input divided by 

output [3], output in software development is difficult to meas-

ure and researchers do not agree on one definition [4] [5] [6]. 

Number of lines of code (LOC) has been proposed as a devel-

oper contribution metric [7] [8], but its value is limited because 

it does not necessarily reflect the aggregated value of what is 

being produced and neither the quality [9] [10] [11]. Other stud-

ies have used different definitions of developer contribution to 

measure performance and participation, for example by includ-

ing contribution to the issue tracking system [14] [15] [16]. 

However, while several developer contribution metrics have 

been proposed, few have been evaluated at software companies 

with the individuals who will base their decision on them – pro-

ject and team leaders. In this work, we propose the design of a 

suite of developer contribution metrics based on empirical evi-

dence obtained from project and team leaders. So far, we have 

collected feedback from project and team leaders on five repos-

itory mining-based metrics, covering code contribution, code 

complexity, and bug-related metrics. For each team, we calcu-

lated the evaluated metrics over a period of 12 weeks, resulting 

in metrics for 48 developers in total. We then showed the results 

to seven project and team leaders and asked them to evaluate the 

usefulness and applicability of each metric for their decision 

making. Unlike our previous work [12], the answers of partici-

pants were based on concrete data from their own developers, 

and unlike the work of Meyer et al. [13], we asked project and 

team leaders rather than developers for their input, considering 

that it is usually individuals in leading roles who need to assess 

the contribution of developers. 

Code contribution and code complexity metrics received the 

most positive feedback from our participants. On the other hand, 

several threats were pointed out regarding the use of bug-related 

metrics for the assessment of developer contribution. While 

none of the metrics can be used in isolation, these findings pro-

vide a first step towards the design of a larger suite of metrics 

for the assessment of developer contribution, based on empirical 

evidence from project and team leaders. After reporting our pre-

liminary findings, we propose a set of metrics that cover aspects 

missed by the metrics that we have evaluated so far, including 

communication, collaboration and task distribution metrics. In 

addition and in light of recent research on gamification in soft-

ware development, we propose to study the Hawthorne effect of 

assessing developer contribution with repository mining-based 

metrics. In other words, based on the proposed suite of developer 

contribution metrics, we plan to study to what extent developers' 

behavior will change based on their awareness of being meas-

ured using certain metrics. 

II. REPOSITORY MINING-BASED METRICS 

In this section, we present the metrics from previous work 

that we have evaluated so far: code contribution, average com-



plexity per method, introduced bugs, and bug fixing contribu-

tion. Code contribution is measured in terms of lines of code 

(LOC). This metric is the sum of added, changed and deleted 

LOC of each developer, ignoring comments and blank lines. 

The average complexity per method is represented by two 

metrics that indicate the extent of the McCabe cyclomatic com-

plexity [17] added or modified by a developer. The first com-

plexity metric is the average complexity per added method, i.e., 

the sum of the cyclomatic complexities of all methods added by 

the developer divided by the number of added methods. The sec-

ond complexity metric is the average complexity per changed 

method, i.e., the sum of cyclomatic complexity deltas (calculated 

based on the complexity before and after the change) of all meth-

ods changed by the developer divided by the number of changed 

methods. Our current implementation ignores negative deltas 

which occur when the complexity of a method was reduced as 

part of a change. 

The introduced bugs metric quantifies the number of bugs 

introduced by each developer. To find bugs introduced by devel-

opers, our miner, which is based on Eyolfson et al.’s approach 

[20], identifies code fragments that had to be changed to fix a 

bug reported in the issue tracker system. After that, the algorithm 

identifies the last developer who changed or created that code 

fragment. We chose Eyolfson et al.’s approach because it is a 

well known algorithm to identify who introduced bugs. The last 

metric is bug fixing contribution, which quantifies, in percent-

age, the commits made by the developer in bug tasks, among the 

commits made by the rest of the team. We chose these metrics 

based on discussions with the development teams that partici-

pated in our preliminary study. 

III. RESEARCH METHOD 

The preliminary study was conducted at the Informatics De-

partment (aka. SINFO1) of the Federal University of Rio Grande 

do Norte (UFRN) in Brazil, which is responsible for the devel-

opment of large scale web information systems that provide sup-

port for the academic, human resources and asset management 

at the university. These systems are developed in Java and are 

currently used by and customized to twenty Brazilian federal 

universities, five federal education institutes and nine federal 

government agencies. Our study collected data of 12 weeks from 

the source code repository (SVN) and the issue tracker system 

(SINFO’s own implementation). The time window was chosen 

since the developers are being evaluated by the software manag-

ers on a monthly basis. 

We interviewed seven employees from SINFO: four soft-

ware project leaders, one requirements team leader, one support 

team leader and one quality assurance team leader. We refer to 

the four project leaders as PL1 to PL4, and to the other three 

team leaders as TL1 to TL3. Every month, the project leaders 

(PL#) have to define a financial bonus for their software devel-

opers based on individual performance and participation in the 

project. When we asked them about difficulties in defining a de-

veloper’s bonus, they reported that it is time-consuming, suffers 
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from a lack of established evaluation criteria and a lack of justi-

fication, and that it currently does not consider social or psycho-

logical aspects. The process is very subjective, and project lead-

ers are looking for more objective criteria. 

The data collection was divided into two parts. The first one 

was the extraction of metrics from a twelve-week period related 

to the developers’ contribution, which were shown to the leaders 

during the interviews. The second part of the data collection con-

sisted of semi-structured interviews that were performed face-

to-face with the leaders. The interviewer used a script with 20 

main questions and 10 supporting questions2. The average time 

of the interviews was about one hour, and all of them were rec-

orded for future transcription and analysis. 

To analyze the interview data, we used Grounded Theory 

[18], a methodology to perform qualitative analysis in order to 

support data-based theories. In the data coding phase, we derived 

38 codes divided into four categories: (i) participant background; 

(ii) current method of bonus definition; (iii) improvements to bo-

nus definition approach; and (iv) usefulness and applicability of 

the metrics. In the writing memos phase, we used a bottom-up 

approach, in which we first examined the child-code segments 

followed by the parent-code fragments and so on. 

IV. PRELIMINARY RESULTS 

In this section, we report our preliminary results regarding 

the metric-based contribution assessment. 

A. Code Contribution 

All leaders agreed that the code contribution metric is useful 

to evaluate developers’ individual contribution. However, PL1, 

PL2 and TL3 pointed out that it must be used together with other 

information, such as the tasks finished by the developer and/or 

complexity-related metrics: “Why does one developer produce 

one thousand LOC in one week, and in another week he pro-

duces just sixty-four? It’s not that simple” [TL3]. 

When asked about unexpected metric values of their devel-

opers, PL3 and PL4 were surprised because they did not know 

how to explain why two of their developers had high values for 

code contribution. This anecdote reinforces the idea of incom-

pleteness of this metric and indicates that it has to be comple-

mented with other information. In addition, TL3 said that the 

code contribution metric could be useful to instigate the project 

leader to investigate why there was a drop in the code production 

of a particular developer: “Why did a developer have such high 

coding production level and now it’s so low?” 

PL3 argued that the current implementation of the code con-

tribution metric does not quantify contributions to non-Java ar-

tifacts. Thus, it may penalize front-end developers, which mostly 

contribute to HTML/JSP pages, CSS and JavaScript scripts. An-

other reported threat (PL4) is that developers that use modern 

technologies or techniques, such as generics or regular expres-

sions which solve a problem with less coding, may be penalized. 

This threat drives us to question whether a developer with high 

code contribution indeed provides the best coding performance. 

2 Interview script available at 

http://jalerson.me/docs/dissertation-interviews-script.pdf 



PL2 and TL3 argued that the metric should not be used isolated 

from other information, because of potential misinterpretations. 

B. Average Complexity per Method 

Complexity metrics were well received by our participants. 

PL2 argued that these metrics can help project leaders evaluate 

how complexity was distributed and identify developers who 

write unnecessarily complex code or need training: “So we’ll be 

able to see both sides: who is developing well and who needs 

technical support”. PL3 agreed: “Higher complexity makes it 

harder to make some sort of adjustment, changes, a possible evo-

lution of the system, so I think this is a good metric”. 

To better understand the values of these metrics, PL3 sug-

gested that the values should be accompanied by base values, 

such as the number of added and changed methods per developer 

as well as the cyclomatic complexity of the added and changed 

code: “This metric value is X, but how many methods did he 

change?” Similarly, PL1 suggested that these metrics should be 

accompanied by a list of tasks closed by the developer, to allow 

the project leader to evaluate the metric values and the complex-

ity of the tasks. 

C. Introduced Bugs 

The feedback about the “introduced bugs” metric was mixed. 

Some of our participants argued that it is useful, whereas other 

leaders said that it could not be used isolated from other infor-

mation or that too many threats hinder its interpretation. PL1 

found that one of his developers, who he believed to have low 

bug rates (based on the number of errors associated with the de-

veloper) indeed had low values for this metric. “So she devel-

oped entire new modules of the system. So it’s really a confirma-

tion of what I said, that she produces a lot of code but with a low 

error rate compared to other developers”. 

According to TL1, TL2 and TL3, this metric may be useful 

to identify situations in which developers do not properly test 

their code, possibly caused by lack of time, as pointed out by 

TL1. TL1 also suggested that project leaders have to be aware of 

the number of tasks performed by the developer. TL3 argued that 

the project leader needs to take additional aspects into consider-

ation, for example, what pressures the developer was faced with 

due to deadlines. 

For TL3 and PL3, this metric should not be used in isolation, 

because this could lead to misinterpretation: “[Specific devel-

oper] is a senior developer, and he has high values of introduced 

bugs, but he works on complex tasks, handling complex code 

[…] So this isolated metric can’t help me, I need to see it asso-

ciated with what he is producing” [TL3]. 

The main threat of this metric, reported by six of the seven 

interviewed leaders after observing the metric values for the de-

velopers in their teams, was that the developers who had greater 

values for this metric were those who had more experience and 

had been on the project for longer. This metric tends to penalize 

the most experienced developers of the team, since they have 

produced more code compared to newer developers. Because of 

the way the algorithm identifies who introduced bugs, the expe-

rienced developers have a higher chance of being identified as 

“guilty” by the algorithm. 

D. Bug Fixing Contribution 

SINFO’s development teams have bug fixing cells, com-

posed of one or two developers who focus on fixing bugs. The 

project leaders confirmed that the bug fixing contribution metric 

indeed showed higher values for the developers who belong to 

these cells. According to PL1 and PL4, at certain times there is 

an increase in the occurrence of bugs, and project leaders tend to 

distribute these bugs among team members, instead of concen-

trating them in the bug fixing cells. PL1 commented that, in 

these situations, he can ask the members of these cells to con-

tribute to other kind of tasks, for example, developing new fea-

tures: “That week I distributed the error tasks better, so this re-

inforces that he could have produced more”. 

However, PL4 argued that this metric is not useful, since it 

only indicates who contributed most to bug fixing tasks, which 

is something that project leaders already know. PL1 argued that 

some tasks do not require coding, and since this metric only 

quantifies commits, these contributions would not be consid-

ered: “Some tasks don’t require coding [… for example] the de-

veloper produces a database fixing patch”. In addition, PL1 said 

that it is necessary to consider the complexity of the bug fixing 

tasks, and not only the number of tasks or commits. 

For PL1 and TL3, the values of this metric should not be 

shown as percentage, because this promotes a comparison 

among team members which may not be fair, because it may fa-

vor developers in the previously mentioned bug fixing cells. For 

these leaders, the comparison should be made using absolute val-

ues and among bug fixing cells of different development teams: 

“The development teams have bug fixing cells, so I have to com-

pare among them” [TL3]. 

TL2 presented two interesting situations for this metric. 

First, a bug task that was closed with many commits may be too 

complex and require a lot of effort, or it may result from a de-

veloper who has the habit to make many small commits. Second, 

a task that was closed with a single commit may be either simple 

or the result of a developer with the habit to only commit once 

when the task is finished. These two situations show that the 

number of commits is not a reliable attribute to measure the ef-

fort needed to finish the task, which is why TL2 asked: “What is 

better? Is it better if the metric has high or low values?”  

E. Overall Benefits and Limitations 

According to PL2, the metrics may help project leaders to 

analyze the software contribution of their developers in a tech-

nical way, since their analysis is currently done subjectively: 

“We can see the productivity of the developer in terms of code, 

technique. These metrics could help so much”. In addition, PL3 

argued that these metrics can help project leaders identify devel-

opers who need training: “The manager will be able to define 

strategies to technically improve his team with training, aiming 

that these metric values become more homogeneous”. 

PL3 also argued that SINFO’s current approach to define the 

monthly bonus of their developers takes a significant amount of 

time, and after seeing our developer contribution metrics which 

can be generated periodically and automatically, he said that 

they will help reduce the evaluation time. For PL1, the metrics 

could be used as technical and objective criteria to justify why 



developers are receiving a particular bonus: “Maybe just the 

number of tasks is not enough [to justify], but showing these 

numbers [of the metrics], maybe they could support me to jus-

tify”. TL1 also reported that the metrics could be useful to for-

malize the criteria to evaluate developers.  

TL3 suggested that these metrics may complement the sub-

jective evaluation of developers’ contribution. By reading the 

historical values of the metrics, project leaders will be able to 

detect considerable variations, which may indicate that develop-

ers deal with personal or professional problems. For PL2 and 

TL3, the metrics should not be used in isolation, but combined 

with other metrics or information about the tasks performed by 

the developer: “It’s limited because it’s an isolated number, but 

when you have several metrics, several indicators, then you start 

to complement […] but even having several metrics, the per-

sonal side is lacking.” [TL3]. 

V. DISCUSSION AND FUTURE WORK 

These preliminary results confirm the need for a suite of met-

rics rather than one isolated metric. Aiming to build a better suite 

of software contribution metrics and based on the insights gained 

from our preliminary work, we plan to evaluate further metrics, 

especially considering communication, collaboration and task 

distribution. We intend to evaluate communication through e-

mail messages and team communication platforms, for example, 

Slack, HipChat and Gitter. Collaboration is hard to measure be-

cause it is often not explicitly stored in an artifact. However, 

some software collaboration platforms such as GitHub, GitLab 

and BitBucket are useful to assess collaboration among devel-

opers, for example, by tracking comments and pull requests. 

Metrics are also valuable to keep project leaders aware of what 

is happening in their teams and what their developers are work-

ing on. For example, a useful awareness metric for project lead-

ers is a set of percentage indicators that provide an overview of 

which kind of tasks their developers are working on during a 

certain time period. 

According to our preliminary results, the metrics of code 

contribution and average complexity per method are best suited 

to support project leaders’ evaluation of the contribution of their 

software developers, while bug-related metrics may not be ap-

plicable due to the previously reported limitations and threats. 

We plan to expand on this work by also asking developers about 

their impressions, and then comparing the feedback obtained 

from project and team leaders to that of the developers. 

Another important avenue for future work is the evaluation 

of the impact of measuring contribution on developers’ behav-

ior, known as Hawthorne effect3, i.e., the effect of individuals 

modifying an aspect of their behavior in response to their aware-

ness of being observed. In terms of a research methodology, we 

plan to record metric values of developers for a certain period 

without the developers being aware of the measurement. In a 

second phase, the same developers will then be notified about 

what aspects of their contributions are measured, which will al-

low us to see the extent to which the Hawthorne effect changes 

developers’ behavior. Understanding the effect caused by the 

                                                           
3 http://www.economist.com/node/12510632 

specific metrics will enable us to fine-tune the metrics and to 

interpret them in context. 

The idea behind studying the Hawthorne effect is related to 

gamification. Gamification concepts and techniques have been 

used in software development to motivate developers and in-

crease productivity [19]. A key concept of gamification is the 

reward mechanism, which consists of awards given to develop-

ers that have accomplished certain goals. As part of this research 

agenda, we will investigate how the suite of contribution metrics 

can be used to reward developers as well as how the suite’s im-

plementation affects developer behavior and engagement. In ad-

dition, future work will include investigating ethical implica-

tions of using automated tools to measure employees’ work. 

VI. LIMITATIONS AND THREATS 

Our preliminary work has some limitations and threats, 

which will partly be mitigated by our future work. Since the 

qualitative study reported in this paper was performed with 

seven project and team leaders of SINFO, we cannot claim that 

we covered all possible perspectives about individual contribu-

tion evaluation of software developers, and the results may be 

biased due to SINFO’s bonus system for developers. In addition, 

we focused on feedback from project and team leaders rather 

than developers because it is usually individuals in leading posi-

tions who will make use of the numbers provided in a metrics 

suite. Because of this focus of our work, we cannot make claims 

about the viewpoints of developers at this point. Our evaluation 

is limited to a set of five metrics, and while we cannot claim 

anything beyond these metrics, this is the main goal of our future 

work, in particular focusing on human and social aspects, includ-

ing communication, collaboration and task distribution. 

VII. RELATED WORK 

Costa et al. [1] used repository mining-based metrics and 

process mining to evaluate a developer’s contribution. Three 

metrics were used to assess contribution: commits that intro-

duced bugs, code contribution, and fixed priority bugs. The 

study tried to identify which groups of software developers 

(core, peripheral and active) have the best values for these met-

rics. The authors conclude that the metric values of the developer 

groups have statistically significant differences and that the core 

developers have the greatest code contribution and introduce 

proportionally fewer bugs into the system. In addition, a new 

group of developers was identified, those with fewer introduced 

bugs compared to peripheral developers, but more bugs com-

pared to the core developers. 

Gousios et al. [14] presented an approach to measure the con-

tribution of an individual software developer using a set of re-

pository mining-based metrics. Some of these contributions may 

be considered positive actions, for example, fixing a bug or cre-

ating a new Wiki page, while others may be considered negative 

actions, for example, performing a commit without comments or 

introducing a bug into the system. The evaluation study of the 

proposed approach mined data from 48 GNOME subprojects. 

The authors collected data from code repositories and email 



messages to produce 17 metrics, out of which 14 were consid-

ered positive and 3 negative. 

Rastogi et al. [15] proposed a framework, called Samiksha, 

to evaluate the maintenance contribution of bug reporters, bug 

triagers, bug owners and collaborators using eleven metrics. 

Their study points out the importance of the attributes captured 

by the metrics as well as the lack of precision to capture and as-

sess these attributes. Nagwani and Verma [16] presented a tech-

nique to rank developers based on their bug fixing contribution. 

This ranking is based on four metrics: number of fixed bugs, 

number of comments, number of reported bugs and number of 

messages received. An evaluation study was conducted using the 

Mozilla Bug Repository, with about a thousand bugs that were 

fixed by 97 developers. The study results presented two rankings 

with the developers who most contributed to bug fixing. 

None of these papers report an evaluation of contribution 

metrics with the decision makers in a development team. 

VIII. CONCLUSION 

Assessing the contribution of developers in software projects 

is challenging, and while many metrics have been proposed for 

this purpose, few have been evaluated with the individuals who 

will use them in their decision making processes: project and 

team leaders. In this paper, we have proposed a research agenda 

to build a suite of contribution metrics based on empirical evi-

dence collected from project and team leaders. In our prelimi-

nary work, we collected five metrics from 48 developers in four 

teams over a period of twelve weeks, and we showed the col-

lected data to the project and team leaders to find out which met-

rics are suitable for contribution assessment. Code contribution 

and complexity metrics received the most positive feedback 

while bug-related metrics were seen more critically. Based on 

this preliminary work, we plan to expand our suite of contribu-

tion metrics, in particular by including metrics that assess com-

munication, collaboration and task distribution.  

Measuring contribution can have side-effects, both benefi-

cial and undesirable. As part of this research project, we will also 

investigate the impact of measuring developers' contribution on 

the work of these developers. While positive effects may be en-

hanced, for example using gamification, there is a risk that de-

velopers focus on achieving certain metric values instead of 

building good software.  
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