
Assessing Developer Contribution with Repository

Mining-Based Metrics

Jalerson Lima

Department of Informatics and Applied Mathematics

Federal University of Rio Grande do Norte and

Federal Institute of Education at Rio Grande do Norte

Natal, Rio Grande do Norte, Brazil

jalerson.lima@ifrn.edu.br

Christoph Treude, Fernando Figueira Filho, Uirá

Kulesza

Department of Informatics and Applied Mathematics

Federal University of Rio Grande do Norte

Natal, Rio Grande do Norte, Brazil

{ctreude,fernando,uira}@dimap.ufrn.br

Abstract— Productivity as a result of individual developers' con-

tributions is an important aspect for software companies to main-

tain their competitiveness in the market. However, there is no con-

sensus in the literature on how to measure productivity or devel-

oper contribution. While some repository mining-based metrics

have been proposed, they lack validation in terms of their applica-

bility and usefulness from the individuals who will use them to as-

sess developer contribution: team and project leaders. In this pa-

per, we propose the design of a suite of metrics for the assessment

of developer contribution, based on empirical evidence obtained

from project and team leaders. In a preliminary evaluation with

four software development teams, we found that code contribution

and code complexity metrics received the most positive feedback,

while participants pointed out several threats of using bug-related

metrics for contribution assessment. None of the metrics can be

used in isolation, and project leaders and developers need to be

aware of the benefits, limitations, and threats of each one. These

findings present a first step towards the design of a larger suite of

metrics as well as an investigation into the impact of using metrics

to assess contribution.

Index Terms—Project management, software contribution

metrics, mining software repositories.

I. INTRODUCTION AND MOTIVATION

Assessing the contribution of a developer in a software pro-

ject is a challenging task, yet project leaders and managers are

constantly faced with having to make decisions based on the per-

formance of their developers. Many potential sources of devel-

oper contribution have to be considered, ranging from contribu-

tions in source code repositories and issue tracking systems to

contributions to documentation and coordination. There is no

consensus among researchers on how to assess developer contri-

bution, which is often conceptualized as productivity [1] [2].

While productivity is formally defined as input divided by

output [3], output in software development is difficult to meas-

ure and researchers do not agree on one definition [4] [5] [6].

Number of lines of code (LOC) has been proposed as a devel-

oper contribution metric [7] [8], but its value is limited because

it does not necessarily reflect the aggregated value of what is

being produced and neither the quality [9] [10] [11]. Other stud-

ies have used different definitions of developer contribution to

measure performance and participation, for example by includ-

ing contribution to the issue tracking system [14] [15] [16].

However, while several developer contribution metrics have

been proposed, few have been evaluated at software companies

with the individuals who will base their decision on them – pro-

ject and team leaders. In this work, we propose the design of a

suite of developer contribution metrics based on empirical evi-

dence obtained from project and team leaders. So far, we have

collected feedback from project and team leaders on five repos-

itory mining-based metrics, covering code contribution, code

complexity, and bug-related metrics. For each team, we calcu-

lated the evaluated metrics over a period of 12 weeks, resulting

in metrics for 48 developers in total. We then showed the results

to seven project and team leaders and asked them to evaluate the

usefulness and applicability of each metric for their decision

making. Unlike our previous work [12], the answers of partici-

pants were based on concrete data from their own developers,

and unlike the work of Meyer et al. [13], we asked project and

team leaders rather than developers for their input, considering

that it is usually individuals in leading roles who need to assess

the contribution of developers.

Code contribution and code complexity metrics received the

most positive feedback from our participants. On the other hand,

several threats were pointed out regarding the use of bug-related

metrics for the assessment of developer contribution. While

none of the metrics can be used in isolation, these findings pro-

vide a first step towards the design of a larger suite of metrics

for the assessment of developer contribution, based on empirical

evidence from project and team leaders. After reporting our pre-

liminary findings, we propose a set of metrics that cover aspects

missed by the metrics that we have evaluated so far, including

communication, collaboration and task distribution metrics. In

addition and in light of recent research on gamification in soft-

ware development, we propose to study the Hawthorne effect of

assessing developer contribution with repository mining-based

metrics. In other words, based on the proposed suite of developer

contribution metrics, we plan to study to what extent developers'

behavior will change based on their awareness of being meas-

ured using certain metrics.

II. REPOSITORY MINING-BASED METRICS

In this section, we present the metrics from previous work

that we have evaluated so far: code contribution, average com-

plexity per method, introduced bugs, and bug fixing contribu-

tion. Code contribution is measured in terms of lines of code

(LOC). This metric is the sum of added, changed and deleted

LOC of each developer, ignoring comments and blank lines.

The average complexity per method is represented by two

metrics that indicate the extent of the McCabe cyclomatic com-

plexity [17] added or modified by a developer. The first com-

plexity metric is the average complexity per added method, i.e.,

the sum of the cyclomatic complexities of all methods added by

the developer divided by the number of added methods. The sec-

ond complexity metric is the average complexity per changed

method, i.e., the sum of cyclomatic complexity deltas (calculated

based on the complexity before and after the change) of all meth-

ods changed by the developer divided by the number of changed

methods. Our current implementation ignores negative deltas

which occur when the complexity of a method was reduced as

part of a change.

The introduced bugs metric quantifies the number of bugs

introduced by each developer. To find bugs introduced by devel-

opers, our miner, which is based on Eyolfson et al.’s approach

[20], identifies code fragments that had to be changed to fix a

bug reported in the issue tracker system. After that, the algorithm

identifies the last developer who changed or created that code

fragment. We chose Eyolfson et al.’s approach because it is a

well known algorithm to identify who introduced bugs. The last

metric is bug fixing contribution, which quantifies, in percent-

age, the commits made by the developer in bug tasks, among the

commits made by the rest of the team. We chose these metrics

based on discussions with the development teams that partici-

pated in our preliminary study.

III. RESEARCH METHOD

The preliminary study was conducted at the Informatics De-

partment (aka. SINFO1) of the Federal University of Rio Grande

do Norte (UFRN) in Brazil, which is responsible for the devel-

opment of large scale web information systems that provide sup-

port for the academic, human resources and asset management

at the university. These systems are developed in Java and are

currently used by and customized to twenty Brazilian federal

universities, five federal education institutes and nine federal

government agencies. Our study collected data of 12 weeks from

the source code repository (SVN) and the issue tracker system

(SINFO’s own implementation). The time window was chosen

since the developers are being evaluated by the software manag-

ers on a monthly basis.

We interviewed seven employees from SINFO: four soft-

ware project leaders, one requirements team leader, one support

team leader and one quality assurance team leader. We refer to

the four project leaders as PL1 to PL4, and to the other three

team leaders as TL1 to TL3. Every month, the project leaders

(PL#) have to define a financial bonus for their software devel-

opers based on individual performance and participation in the

project. When we asked them about difficulties in defining a de-

veloper’s bonus, they reported that it is time-consuming, suffers

1 http://www.info.ufrn.br

from a lack of established evaluation criteria and a lack of justi-

fication, and that it currently does not consider social or psycho-

logical aspects. The process is very subjective, and project lead-

ers are looking for more objective criteria.

The data collection was divided into two parts. The first one

was the extraction of metrics from a twelve-week period related

to the developers’ contribution, which were shown to the leaders

during the interviews. The second part of the data collection con-

sisted of semi-structured interviews that were performed face-

to-face with the leaders. The interviewer used a script with 20

main questions and 10 supporting questions2. The average time

of the interviews was about one hour, and all of them were rec-

orded for future transcription and analysis.

To analyze the interview data, we used Grounded Theory

[18], a methodology to perform qualitative analysis in order to

support data-based theories. In the data coding phase, we derived

38 codes divided into four categories: (i) participant background;

(ii) current method of bonus definition; (iii) improvements to bo-

nus definition approach; and (iv) usefulness and applicability of

the metrics. In the writing memos phase, we used a bottom-up

approach, in which we first examined the child-code segments

followed by the parent-code fragments and so on.

IV. PRELIMINARY RESULTS

In this section, we report our preliminary results regarding

the metric-based contribution assessment.

A. Code Contribution

All leaders agreed that the code contribution metric is useful

to evaluate developers’ individual contribution. However, PL1,

PL2 and TL3 pointed out that it must be used together with other

information, such as the tasks finished by the developer and/or

complexity-related metrics: “Why does one developer produce

one thousand LOC in one week, and in another week he pro-

duces just sixty-four? It’s not that simple” [TL3].

When asked about unexpected metric values of their devel-

opers, PL3 and PL4 were surprised because they did not know

how to explain why two of their developers had high values for

code contribution. This anecdote reinforces the idea of incom-

pleteness of this metric and indicates that it has to be comple-

mented with other information. In addition, TL3 said that the

code contribution metric could be useful to instigate the project

leader to investigate why there was a drop in the code production

of a particular developer: “Why did a developer have such high

coding production level and now it’s so low?”

PL3 argued that the current implementation of the code con-

tribution metric does not quantify contributions to non-Java ar-

tifacts. Thus, it may penalize front-end developers, which mostly

contribute to HTML/JSP pages, CSS and JavaScript scripts. An-

other reported threat (PL4) is that developers that use modern

technologies or techniques, such as generics or regular expres-

sions which solve a problem with less coding, may be penalized.

This threat drives us to question whether a developer with high

code contribution indeed provides the best coding performance.

2 Interview script available at

http://jalerson.me/docs/dissertation-interviews-script.pdf

PL2 and TL3 argued that the metric should not be used isolated

from other information, because of potential misinterpretations.

B. Average Complexity per Method

Complexity metrics were well received by our participants.

PL2 argued that these metrics can help project leaders evaluate

how complexity was distributed and identify developers who

write unnecessarily complex code or need training: “So we’ll be

able to see both sides: who is developing well and who needs

technical support”. PL3 agreed: “Higher complexity makes it

harder to make some sort of adjustment, changes, a possible evo-

lution of the system, so I think this is a good metric”.

To better understand the values of these metrics, PL3 sug-

gested that the values should be accompanied by base values,

such as the number of added and changed methods per developer

as well as the cyclomatic complexity of the added and changed

code: “This metric value is X, but how many methods did he

change?” Similarly, PL1 suggested that these metrics should be

accompanied by a list of tasks closed by the developer, to allow

the project leader to evaluate the metric values and the complex-

ity of the tasks.

C. Introduced Bugs

The feedback about the “introduced bugs” metric was mixed.

Some of our participants argued that it is useful, whereas other

leaders said that it could not be used isolated from other infor-

mation or that too many threats hinder its interpretation. PL1

found that one of his developers, who he believed to have low

bug rates (based on the number of errors associated with the de-

veloper) indeed had low values for this metric. “So she devel-

oped entire new modules of the system. So it’s really a confirma-

tion of what I said, that she produces a lot of code but with a low

error rate compared to other developers”.

According to TL1, TL2 and TL3, this metric may be useful

to identify situations in which developers do not properly test

their code, possibly caused by lack of time, as pointed out by

TL1. TL1 also suggested that project leaders have to be aware of

the number of tasks performed by the developer. TL3 argued that

the project leader needs to take additional aspects into consider-

ation, for example, what pressures the developer was faced with

due to deadlines.

For TL3 and PL3, this metric should not be used in isolation,

because this could lead to misinterpretation: “[Specific devel-

oper] is a senior developer, and he has high values of introduced

bugs, but he works on complex tasks, handling complex code

[…] So this isolated metric can’t help me, I need to see it asso-

ciated with what he is producing” [TL3].

The main threat of this metric, reported by six of the seven

interviewed leaders after observing the metric values for the de-

velopers in their teams, was that the developers who had greater

values for this metric were those who had more experience and

had been on the project for longer. This metric tends to penalize

the most experienced developers of the team, since they have

produced more code compared to newer developers. Because of

the way the algorithm identifies who introduced bugs, the expe-

rienced developers have a higher chance of being identified as

“guilty” by the algorithm.

D. Bug Fixing Contribution

SINFO’s development teams have bug fixing cells, com-

posed of one or two developers who focus on fixing bugs. The

project leaders confirmed that the bug fixing contribution metric

indeed showed higher values for the developers who belong to

these cells. According to PL1 and PL4, at certain times there is

an increase in the occurrence of bugs, and project leaders tend to

distribute these bugs among team members, instead of concen-

trating them in the bug fixing cells. PL1 commented that, in

these situations, he can ask the members of these cells to con-

tribute to other kind of tasks, for example, developing new fea-

tures: “That week I distributed the error tasks better, so this re-

inforces that he could have produced more”.

However, PL4 argued that this metric is not useful, since it

only indicates who contributed most to bug fixing tasks, which

is something that project leaders already know. PL1 argued that

some tasks do not require coding, and since this metric only

quantifies commits, these contributions would not be consid-

ered: “Some tasks don’t require coding [… for example] the de-

veloper produces a database fixing patch”. In addition, PL1 said

that it is necessary to consider the complexity of the bug fixing

tasks, and not only the number of tasks or commits.

For PL1 and TL3, the values of this metric should not be

shown as percentage, because this promotes a comparison

among team members which may not be fair, because it may fa-

vor developers in the previously mentioned bug fixing cells. For

these leaders, the comparison should be made using absolute val-

ues and among bug fixing cells of different development teams:

“The development teams have bug fixing cells, so I have to com-

pare among them” [TL3].

TL2 presented two interesting situations for this metric.

First, a bug task that was closed with many commits may be too

complex and require a lot of effort, or it may result from a de-

veloper who has the habit to make many small commits. Second,

a task that was closed with a single commit may be either simple

or the result of a developer with the habit to only commit once

when the task is finished. These two situations show that the

number of commits is not a reliable attribute to measure the ef-

fort needed to finish the task, which is why TL2 asked: “What is

better? Is it better if the metric has high or low values?”

E. Overall Benefits and Limitations

According to PL2, the metrics may help project leaders to

analyze the software contribution of their developers in a tech-

nical way, since their analysis is currently done subjectively:

“We can see the productivity of the developer in terms of code,

technique. These metrics could help so much”. In addition, PL3

argued that these metrics can help project leaders identify devel-

opers who need training: “The manager will be able to define

strategies to technically improve his team with training, aiming

that these metric values become more homogeneous”.

PL3 also argued that SINFO’s current approach to define the

monthly bonus of their developers takes a significant amount of

time, and after seeing our developer contribution metrics which

can be generated periodically and automatically, he said that

they will help reduce the evaluation time. For PL1, the metrics

could be used as technical and objective criteria to justify why

developers are receiving a particular bonus: “Maybe just the

number of tasks is not enough [to justify], but showing these

numbers [of the metrics], maybe they could support me to jus-

tify”. TL1 also reported that the metrics could be useful to for-

malize the criteria to evaluate developers.

TL3 suggested that these metrics may complement the sub-

jective evaluation of developers’ contribution. By reading the

historical values of the metrics, project leaders will be able to

detect considerable variations, which may indicate that develop-

ers deal with personal or professional problems. For PL2 and

TL3, the metrics should not be used in isolation, but combined

with other metrics or information about the tasks performed by

the developer: “It’s limited because it’s an isolated number, but

when you have several metrics, several indicators, then you start

to complement […] but even having several metrics, the per-

sonal side is lacking.” [TL3].

V. DISCUSSION AND FUTURE WORK

These preliminary results confirm the need for a suite of met-

rics rather than one isolated metric. Aiming to build a better suite

of software contribution metrics and based on the insights gained

from our preliminary work, we plan to evaluate further metrics,

especially considering communication, collaboration and task

distribution. We intend to evaluate communication through e-

mail messages and team communication platforms, for example,

Slack, HipChat and Gitter. Collaboration is hard to measure be-

cause it is often not explicitly stored in an artifact. However,

some software collaboration platforms such as GitHub, GitLab

and BitBucket are useful to assess collaboration among devel-

opers, for example, by tracking comments and pull requests.

Metrics are also valuable to keep project leaders aware of what

is happening in their teams and what their developers are work-

ing on. For example, a useful awareness metric for project lead-

ers is a set of percentage indicators that provide an overview of

which kind of tasks their developers are working on during a

certain time period.

According to our preliminary results, the metrics of code

contribution and average complexity per method are best suited

to support project leaders’ evaluation of the contribution of their

software developers, while bug-related metrics may not be ap-

plicable due to the previously reported limitations and threats.

We plan to expand on this work by also asking developers about

their impressions, and then comparing the feedback obtained

from project and team leaders to that of the developers.

Another important avenue for future work is the evaluation

of the impact of measuring contribution on developers’ behav-

ior, known as Hawthorne effect3, i.e., the effect of individuals

modifying an aspect of their behavior in response to their aware-

ness of being observed. In terms of a research methodology, we

plan to record metric values of developers for a certain period

without the developers being aware of the measurement. In a

second phase, the same developers will then be notified about

what aspects of their contributions are measured, which will al-

low us to see the extent to which the Hawthorne effect changes

developers’ behavior. Understanding the effect caused by the

3 http://www.economist.com/node/12510632

specific metrics will enable us to fine-tune the metrics and to

interpret them in context.

The idea behind studying the Hawthorne effect is related to

gamification. Gamification concepts and techniques have been

used in software development to motivate developers and in-

crease productivity [19]. A key concept of gamification is the

reward mechanism, which consists of awards given to develop-

ers that have accomplished certain goals. As part of this research

agenda, we will investigate how the suite of contribution metrics

can be used to reward developers as well as how the suite’s im-

plementation affects developer behavior and engagement. In ad-

dition, future work will include investigating ethical implica-

tions of using automated tools to measure employees’ work.

VI. LIMITATIONS AND THREATS

Our preliminary work has some limitations and threats,

which will partly be mitigated by our future work. Since the

qualitative study reported in this paper was performed with

seven project and team leaders of SINFO, we cannot claim that

we covered all possible perspectives about individual contribu-

tion evaluation of software developers, and the results may be

biased due to SINFO’s bonus system for developers. In addition,

we focused on feedback from project and team leaders rather

than developers because it is usually individuals in leading posi-

tions who will make use of the numbers provided in a metrics

suite. Because of this focus of our work, we cannot make claims

about the viewpoints of developers at this point. Our evaluation

is limited to a set of five metrics, and while we cannot claim

anything beyond these metrics, this is the main goal of our future

work, in particular focusing on human and social aspects, includ-

ing communication, collaboration and task distribution.

VII. RELATED WORK

Costa et al. [1] used repository mining-based metrics and

process mining to evaluate a developer’s contribution. Three

metrics were used to assess contribution: commits that intro-

duced bugs, code contribution, and fixed priority bugs. The

study tried to identify which groups of software developers

(core, peripheral and active) have the best values for these met-

rics. The authors conclude that the metric values of the developer

groups have statistically significant differences and that the core

developers have the greatest code contribution and introduce

proportionally fewer bugs into the system. In addition, a new

group of developers was identified, those with fewer introduced

bugs compared to peripheral developers, but more bugs com-

pared to the core developers.

Gousios et al. [14] presented an approach to measure the con-

tribution of an individual software developer using a set of re-

pository mining-based metrics. Some of these contributions may

be considered positive actions, for example, fixing a bug or cre-

ating a new Wiki page, while others may be considered negative

actions, for example, performing a commit without comments or

introducing a bug into the system. The evaluation study of the

proposed approach mined data from 48 GNOME subprojects.

The authors collected data from code repositories and email

messages to produce 17 metrics, out of which 14 were consid-

ered positive and 3 negative.

Rastogi et al. [15] proposed a framework, called Samiksha,

to evaluate the maintenance contribution of bug reporters, bug

triagers, bug owners and collaborators using eleven metrics.

Their study points out the importance of the attributes captured

by the metrics as well as the lack of precision to capture and as-

sess these attributes. Nagwani and Verma [16] presented a tech-

nique to rank developers based on their bug fixing contribution.

This ranking is based on four metrics: number of fixed bugs,

number of comments, number of reported bugs and number of

messages received. An evaluation study was conducted using the

Mozilla Bug Repository, with about a thousand bugs that were

fixed by 97 developers. The study results presented two rankings

with the developers who most contributed to bug fixing.

None of these papers report an evaluation of contribution

metrics with the decision makers in a development team.

VIII. CONCLUSION

Assessing the contribution of developers in software projects

is challenging, and while many metrics have been proposed for

this purpose, few have been evaluated with the individuals who

will use them in their decision making processes: project and

team leaders. In this paper, we have proposed a research agenda

to build a suite of contribution metrics based on empirical evi-

dence collected from project and team leaders. In our prelimi-

nary work, we collected five metrics from 48 developers in four

teams over a period of twelve weeks, and we showed the col-

lected data to the project and team leaders to find out which met-

rics are suitable for contribution assessment. Code contribution

and complexity metrics received the most positive feedback

while bug-related metrics were seen more critically. Based on

this preliminary work, we plan to expand our suite of contribu-

tion metrics, in particular by including metrics that assess com-

munication, collaboration and task distribution.

Measuring contribution can have side-effects, both benefi-

cial and undesirable. As part of this research project, we will also

investigate the impact of measuring developers' contribution on

the work of these developers. While positive effects may be en-

hanced, for example using gamification, there is a risk that de-

velopers focus on achieving certain metric values instead of

building good software.

REFERENCES

[1] D. A. da Costa. “Avaliação da contribuição de desenvolvedores

para projetos de software usando mineração de repositórios de

software e mineração de processos”. Master’s degree dissertation,

2013.

[2] C. Melo, D. Cruzes, F. Kon, F. Conradi. “Interpretative case

studies on agile team productivity and management”. Information

and Software Technology, v. 55, n. 2, p. 412-427, 2013.

[3] B. Kitchenham, E. Mendes. “Software productivity measurement

using multiple size measures”. IEEE Transactions on Software

Engineering, v. 30, n. 12, p. 1023–1035, 2004.

[4] G. S. de Aquino, S. R. L. Meira. “Towards effective productivity

measurement in software projects”. Fourth International

Conference on Software Engineering Advances, p. 241-249,

2009.

[5] K. Petersen. “Measuring and predicting software productivity: A

systematic map and review”. Information and Software

Technology, v. 53, n. 4, p. 317–343, 2011.

[6] A. Trendowicz, J. Münch. “Factors Influencing Software

Development Productivity—State-of-the-Art and Industrial

Experiences”. Advances in computers, v. 77, p. 185–241, 2009.

[7] A. Maccormack, C. F. Kemerer, M. Cusumano, B. Crandall.

“Trade-offs between productivity and quality in selecting

software development practices”. IEEE Software, v. 20, n. 5, p.

78–85, 2003.

[8] N. Ramasubbu, M. Cataldo, R. K. Balan, J. D. Herbsleb.

“Configuring global software teams: a multi-company analysis of

project productivity, quality, and profits”. Proceedings of the 33rd

International Conference on Software Engineering, p. 261-270,

2011.

[9] T. C. Jones. “Measuring programming quality and productivity”.

IBM Systems Journal, v. 17, n. 1, p. 39–63, 1978.

[10] B. W. Boehm. “Improving software productivity”. Computer,

1987.

[11] A. S. Duncan. “Software development productivity tools and

metrics”. Proceedings of the 10th International Conference on

Software Engineering, p. 41-48, 1988.

[12] C. Treude, F. F. Filho, U. Kulesza. “Summarizing and Measuring

Development Activity”. Proceedings of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on

the Foundations of Software Engineering, to appear, 2015.

[13] A. N. Meyer, T. Fritz, G. Murphy, T. Zimmermann. “Software

developers' perceptions of productivity”. Proceedings of the

ACM SIGSOFT Symposium on Foundations of Software

Engineering, p. 19-29, 2014.

[14] G. Gousios, E. Kalliamvakou, D. Spinellis. “Measuring developer

contribution from software repository data”. Proceedings of the

2008 International Working Conference on Mining Software

Repositories, p. 129-132, 2008.

[15] A. Rastogi, A. Gupta, A. Sureka. “Samiksha: mining issue

tracking system for contribution and performance assessment”.

Proceedings of the 6th India Software Engineering Conference, p.

13-22, 2013.

[16] N. K. Nagwani, S. Verma. “Rank-me: A java tool for ranking

team members in software bug repositories”. Journal of Software

Engineering and Applications, v. 5, p. 255, 2012.

[17] T. J. Mccabe. “A complexity measure”. IEEE Transactions on

Software Engineering, n. 4, p. 308–320, 1976.

[18] J. Corbin, A. Strauss. “Basics of qualitative research: Techniques

and procedures for developing grounded theory”. Sage

publications, 2014.

[19] D. J. Dubois, G. Tamburrelli. “Understanding gamification

mechanisms for software development”. Proceedings of the 2013

9th Joint Meeting on Foundations of Software Engineering, p.

659-662, 2013.

[20] J. Eyolfson, L. Tan, P. Lam. “Do time of day and developer

experience affect commit bugginess?”. Proceedings of the 8th

Working Conference on Mining Software Repositories, p. 153-

162, 2011.

