
Squid: An Extensible Infrastructure for Analyzing
Software Product Line Implementations

Alexandre Vianna1, Felipe Pinto1, 2, Demóstenes Sena1, 2 , Uirá Kulesza1

Roberta Coelho1, Jadson Santos1, Jalerson Lima1,2 , Gleydson Lima1

1
Department of Informatics and Applied Mathematics (DIMAp)

Federal University of Rio Grande do Norte (UFRN), Brazil

2
Federal Institute of Education, Science and Technology of Rio Grande do Norte (IFRN)

Natal, Rio Grande do Norte, Brazil

strapacao@gmail.com, {felipe.pinto, demostenes.sena, jalerson.lima}@ifrn.edu.br,

{uira, roberta}@dimap.ufrn.br, {jadson, gleydson}@info.ufrn.br

ABSTRACT

Software product line engineering is about producing a set of
related products that share more commonalities than variabilities.
This approach promotes benefits such as cost reduction, product
quality, productivity and time to market, but it brings new
challenges that must be considered during the evolution of the

software product line. In this context, recent research has explored
and proposed automated approaches based on code analysis and
traceability techniques for change impact analysis. This paper
presents Squid, an extensible infrastructure for analyzing software
product line implementations. The approach uses information
from variability modeling, variability mapping to code assets, and
dependency relationships between code assets to perform analysis
of SPL implementations. A Squid instantiation example is
presented to illustrate the usage of the tool in practical scenarios.

Categories and Subject Descriptors

D.2.13 [Reusable Software]: Domain engineering, Reusable
models

General Terms

Design, Languages

Keywords

Software Product Line, Software Analysis, Software Product Line

Evolution

1. INTRODUCTION
Software product line engineering [1] is about producing a set of
related products that share more commonalities than variabilities.
A software product line (SPL) defines a family of systems that

share common features and differ in other features according to
the requested software systems – products. The SPL approach

promotes benefits such as cost reduction, product quality,

productivity and time to market, but it brings new challenges that
must be considered during the SPL evolution.

Nowadays, the software market requires a massive development
of new features to existing software systems. These changes
impact on the evolution of software systems and create challenges
to the software engineers. However, the development of SPLs
presents specific particularities, such as the modeling and
implementation of variabilities, and the modeling of configuration
knowledge [2] that defines the mapping between variabilities and

code assets.

Therefore, the management of SPL evolution presents specific
peculiarities that involve dealing with assets that represent not just
single software, but families of related systems, requiring
appropriate approaches for this context. Techniques to support the
SPL evolution [3][4] are very useful to help and reduce the effort
of maintenance activities and avoiding adding unwanted side
effects due to changes, for example, adding new features. The

SPL development involves the elaboration of many assets of
diverse types, such as, implementation, documentation and
modeling. Furthermore, there are complex relationships involving
these assets, which increase the difficulty to manage them.

When there is an evolution in a SPL, the changed assets can
potentially affect other assets that are directly or indirectly related.
In such cases, the impacts resulting from these changes need to be
identified and analyzed. The change impact analysis is not a

trivial task to be performed manually by software engineers. It
requires specialized supporting tools. Over the last years, several
techniques and tools have been developed to perform change
impact analysis in the SPL evolution context [5][6][7]. Besides
the fact that these research works bring new advances to the area,
there are still limitations to allow the customization of existing
strategies, and to add new types of analysis to be performed. For
example, the proposed tools are not flexible enough to allow: (i)

the incorporation of new types of assets and dependencies
between them; (ii) the definition of specific and customizable
analysis considering information of variabilities and their
dependencies; and (iii) the implementation of techniques that
support the analysis of dependencies among code assets.

In this scenario, this paper presents Squid – an extensible
infrastructure for analyzing software product lines
implementations. It works with information from: (i)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.
SPLC’12-Workshops, September 02-07, 2012, Salvador, Bahia, Brazil.

Copyright 2011 ACM 1-58113-000-0/00/0010 …$15.00.

commonalities and variabilities extracted from variability
management tools; (ii) mapping between variabilities and code
assets extracted from variability management tools; and (iii)
dependencies and relationships among code assets extracted using
static analysis tools. The Squid infrastructure defines an

extensible model of analysis, named Squid Analysis Model, which
is used to store assets and respective relationships that model and
implement the SPL.

The remainder of this paper is organized as follows: Section 2
presents an overview of Squid infrastructure, architecture and
main modules. Section 3 describes an example of Squid
infrastructure instantiation. Finally, Section 4 concludes the paper
and presents directions for future work.

2. Squid Analyzer
This section presents Squid Analyzer – an extensible
infrastructure for analyzing assets from software product lines
implementations. Section 2.1 gives an overview of the Squid
infrastructure. Section 2.2 illustrates the Squid architecture by

describing its main components. Finally, Section 2.3 shows how
to instantiate the Squid infrastructure to promote different kinds of
analysis in SPL implementations.

2.1 Approach Overview
Our approach aims to provide an extensible infrastructure to the

development of SPL analysis tools, which focuses on the
relationships among assets from problem and solution space. The
Squid infrastructure is implemented as an Eclipse plug-in that
provides extension points to support the implementation of SPL
analysis tools through the extraction of information from reusable
assets, and thereafter the analysis of relationships and properties
of these assets using query and visualization functionalities.

Figure 1 presents an overview of our approach. Initially (step 1),
SPL existing assets are processed by our infrastructure to extract
relevant information to be used in the subsequent analysis of its
properties. Examples of information that can be extracted are: (i)

code assets that implement the SPL; (ii) commonalities and
variabilities specified, for example, using existing feature model
specifications; and (iii) configuration knowledge that maps
abstractions from problem space (e.g. features) to solution space
(e.g. code assets). Most of this information can be extracted from
existing models and artifacts specified using variability
management tools, such as pure::variants [8], Gears [9] or
GenArch [10]. The Squid infrastructure provides extension points

to implement different kinds of extractors to get information from
existing source models. At the end of these steps, all the extracted
information is stored in the Squid Analysis Model.

In the step 2 of our approach, the Squid infrastructure can proceed
with the source code static analysis in order to extract detailed
information about the dependencies relationships among code
assets. It enhances the information stored in the Squid Analysis
Model, thus contributing to improve the subsequent analysis of
SPL properties. Our infrastructure also provides extension points
to connect with existing static analysis tools in order to promote
the extraction of information about the code assets implemented

in different programming languages and using a variety of
libraries and frameworks.

Figure 1. Squid Approach Overview.

After the creation of the Squid Analysis Model using different
asset extractors and code analysis tools (steps 1 and 2), several
analysis can be conducted to verify properties or search for
specific information from the SPL assets by implementing or
reusing specific queries and viewers for the infrastructure (steps 3
and 4). Examples of such analysis are: tracing from features to

code assets, and change impact analysis of specific features or
code assets.

2.1.1 Squid Core
The Squid infrastructure focuses on a flexible implementation that

allows SPL engineers to develop their own extractors, code
analyzers, queries and visualizers in order to address their project
specificities and needs. The infrastructure also promotes the reuse
of previously developed modules by other engineers, thus
contributing to the instantiation of new SPL analysis tools.

The flexibility of the Squid infrastructure is addressed by means
of extension points provided by classes from the Squid core
module. Figure 2 shows a class diagram containing the Java
classes that implement the infrastructure core, and interfaces that
define the extension points. The SquidAnalyserFacade class

represents the main core class that maintains references to objects

of types defined by the following interfaces: Extractor,

CodeAnalyser, Query and Visualizer. Each interface

describes an extension point, which specifies the methods that
engineers must implement in order to be explicitly called by the
SquidAnalyserFacade class. The Extractor interface specifies

an extension point to extracting SPL asset information, such as
code assets, common and variable features, and respective
mapping from features to code assets. The CodeAnalyzer

interface defines the extension point to extract detailed
information about the relationships and dependencies between
code assets. The instance of the CodeAnalyzer interface must

explore the SPL code assets searching for information about code
assets dependencies. The Query interface describes an extension

point to the development of analysis queries on the Squid Model

Analysis Model. Finally, the Visualizer interface is an

extension point to the construction of visualizations of analysis
queries results.

